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Abstract

The translation of cellular mRNA to protein is a tightly controlled process often deregulated in
diseases such as cancer. Furthering our understanding of mRNA structural elements and the
intracellular proteins and signaling pathways that affect protein expression is crucial in the
development of new therapies. In this review, we discuss the current state-of-the-art of
detecting and determining the role of mRNA sequence elements in regulating the initiation of
mRNA translation and the therapeutic strategies that exploit this knowledge to treat disease.

Introduction

The central dogma of molecular biology of the cell describes
the forward flow of information from DNA to RNA to protein,
wherein the instructions (nucleic acid sequences) are used by
a cell to produce a particular protein with a particular amino
acid sequence (Crick 1970). In order for eukaryotic cells and
tissues to function properly, each cellular protein must be made
available in the correct abundance and location at the proper
time. This is a daunting task given the plethora of genes
present in the cell, each potentially yielding mRNAs capable
of competing for the translational activity of ribosomes to
generate a specific protein. The ability of a cell to overcome
this hurdle is achieved in large part through the regulation
of mRNA translation. While transcription factor-mediated
regulation of gene expression controls the production of
cellular mRNAs, the regulation of mRNA translation provides
amore direct and rapid means of regulating protein expression.
Multiple factors govern the translation of mRNA at each step
in between when it is initially transcribed and eventually
degraded. Translational control is the study of the mechanisms
determining which mRNAs are translated into protein under
a particular set of conditions, including extracellular stimuli,
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cell/tissue type and subcellular localization. This capability
allows for the precise spatial and temporal fine-tuning of
protein levels to permit normal physiological function. At
the most basic level mRNA translation can be thought of
as the accumulation of cellular biomass that parallels the
doubling of DNA content necessary before cytokinesis can
ensue. More profoundly, however, one must remember that
each protein may fulfill a precise cellular function that may
be necessary for a cellular process (e.g. growth, proliferation,
survival). Assuch, deregulated mRNA translation can often be
found in disease, including cancer, which exhibits seemingly
unregulated growth and proliferation independent of the cues
(e.g. contact inhibition) that should suppress the mRNA
translation required for such growth. Given the countless,
intricate mechanisms controlling global mRNA translation
and that of specific mRNAs or functionally related mRNA
groups, pharmaceutical targeting of translation holds great
therapeutic potential. In this review we describe and discuss
the post-transcriptional mechanisms that determine whether
a particular mRNA will be efficiently translated into protein
with a strong emphasis on the initiation of mRNA translation,
its regulation and the development of cancer therapies that
exploit our knowledge of this regulation.

© 2010 IOP Publishing Ltd  Printed in the UK
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Post-transcriptional regulation of gene expression

In eukaryotes, multiple variables affect the creation of the
functional output of a gene: the protein (Lackner et al 2007).
Clearly, mRNA synthesis, as governed by transcription factor
activity and epigenetic factors, is an important determinant,
but the regulation of mRNA translation is perhaps equally
important, as a single mRNA being translated efficiently by
multiple ribosomes can soon out-compete high copy, poorly
translating mRNAs (Axelsen and Sneppen 2004). Evidence of
this can be seen given the advent of genome-wide microarray
technology that has allowed rapid profiling of eukaryotic
cells giving an overview of which mRNAs are being highly
expressed in, for example, diseased versus healthy tissues.
The goal of these studies is often to identify an aberrantly
expressed gene product responsible for phenotype of interest.
Along these lines, it has been theorized that a molecular
diagnosis of the gene product driving a disease will be useful
in determining the best course of personalized treatment
(Weinstein 2002). Comparative genomic versus proteomic
studies have indicated, however, that mRNA expression is
only a poor predictor of protein levels in eukaryotes (Gygi
et al 1999, Ideker ef al 2001). As a result, post-transcriptional
mechanisms controlling gene expression have taken on much
importance in understanding the control of the abundance of
cellular proteins.

Following the production of pre-mRNAs in the nucleus,
multiple events must occur before the translation of the
mature mRNA can yield functional proteins (reviewed in
Mansfield and Keene (2009)). Initially, most pre-mRNAs
must be subjected to splicing to remove introns. Clearly,
RNA-binding protein-mediated alternative splicing represents
a potential regulatory event. Addition of the poly(A) tail is
crucially important for subsequent translation efficiency, as
this will allow binding of poly(A) binding protein (PABP).
The resulting mRNA must then be exported from the nucleus
to the cytoplasm, where translation occurs. In the cytoplasm,
mRNA abundance is regulated by stability, a variable that has
gained much attention as of late due to the interest in small
RNAs (e.g. siRNAs and microRNAs), which target mRNAs
for destruction. Finally, the primary focus of this review, the
control of mRNA translation itself, is key in determining the
cellular abundance of a given protein.

Phases of translation

The translation of an mRNA to protein can be divided into three
sub-processes (initiation, elongation and termination), each
of which requires a particular set of conditions and factors.
Figure 1 represents an overview of intracellular signaling
events governing mRNA translation initiation and should help
readers visualize the concepts being presented in this review.
The initiation phase is the rate-limiting step, requires the
function of multiple eukaryotic translation initiation factors
(elFs) and starts with the binding of eIF4F to the 5 cap of
the mRNA (Pestova et al 1996, Sonenberg 2008). elF4F
is a complex composed of three proteins (eIF4E, eIF4G
and elF4A), each with specific roles crucial for efficient

translation of mRNA. eIF4E, the mRNA 5’ cap binding protein,
and elF4A, an ATP-dependent RNA helicase, bind the large
scaffolding protein, eIF4G, which contains binding domains
for mRNA, PABP and elF3 (Gingras et al 1999, Tahara et al
1981). These interactions serve to stabilize and circularize
the eIF4AF:mRNA complex and to recruit the small ribosomal
subunit (Gingras et al 1999, Wells et al 1998). The closed-loop
model proposes that e[F4G’s ability to tether the 5 mRNA cap
(via elF4E) to the poly(A) tail (via PABP) greatly increases
translation efficiency (reviewed in Derry et al (2006)). Once
recruited, the small, 40S ribosomal subunit scans the mRNA
until it reaches the start codon AUG or a cognate triplet in
a favorable sequence and recruits the large, 60S ribosomal
subunit to form the translationally competent 80S ribosome
(Pestova et al 2007). The terms 40S, 60S and 80S refer to
the size-based sedimentation characteristics (Svedberg unit)
of these ribonucleoprotein complexes upon ultracentrifugation
(figure 2).

Importance of mRNA secondary structure: G-C
content

Both ribosome recruitment and scanning are greatly impaired
by complex secondary structure in the mRNA 5’-untranslated
region (UTR), explaining why some mRNAs are more highly
reliant on the helicase activity of eIF4A. As a general rule, the
thermal stability (low AG) of hairpin-like structures upstream
of the start codon inhibits mRNA translation (reviewed in
Merrick (1990)). As such, 5UTRs harboring a high degree
of secondary structure (e.g. with high G—C content) often are
highly reliant upon eIF4F for translational activity (Svitkin
etal2001). Shown in figure 3 are secondary structure/thermal
stability predictions (mfold) for the 5UTRs of three mRNAs
known to be translated in a highly eIF4F-dependent manner:
VEGF, ODC and cyclin D1 (reviewed in De Benedetti and
Graff (2004)). While the 5UTR of the human GAPDH
mRNA, which is efficiently translated even when elFAF
activity is low, shows minimal thermodynamically stable
secondary structure, those of cyclin D1, ODC and VEGF
each possess long, complex secondary structures. Although
these selected examples have been studied extensively as
translationally regulated mRNAs, they likely represent the tip
of the iceberg. A recent analysis of more than 17 000 human
5'UTRs in the RefSeq database suggests that approximately
two thirds may be structured with a predicted AG < —40 kcal
mol~! (Parsyan et al 2009). Interestingly, the 3'UTR, too,
regulates the eIF4E dependence, likely through a variety of
mechanisms, which may include microRNA binding, PABP-
dependent mRNA circularization and/or nucleo-cytoplasmic
mRNA export (Fan et al 2009, Rousseau et al 1996, Santhanam
et al 2009).

mRNA sequence elements

Independent of thermal stability, multiple sequence elements
present within the 5’ and 3’ UTRs of mRNAs have been shown
to greatly influence translation efficiency, allowing coordinate
expression in response to environmental conditions and/or
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Figure 1. Overview of intracellular regulatory mechanisms controlling mRNA translation. mTOR complex 1 (mTORC1) receives signals
reflecting extracellular nutrient (e.g. insulin and growth factors) availability, amino acid abundance and cellular energy levels (ATP). These
pro-growth and proliferation cues result in an increase in the translation of translationally repressed mRNAs, via mTOR’s ability to
phosphorylate 4E-BP1 (freeing eIF4E) and p70 S6 kinase (encouraging 40S small ribosomal subunit recruitment).

RNA binding proteins (reviewed in Keene and Tenenbaum
(2002)). Clearly, it would be naive to attempt to determine the
functional importance of an mRNA element based solely on
two-dimensional structural predictions, as three-dimensional
structures give significantly more insight (for example, Laing
and Hall (1996)).  Still, empirical data are crucial in
establishing the functional importance of mRNA sequence
elements, and deletion/mutation analyses are required to
determine the impact of a given UTR on translation. A
number of such elements have been identified, each with its
own putative structure and mode of regulation (reviewed in
Keene and Tenenbaum (2002)). mRNAs carrying a 5 terminal
oligopyrimidine tract (5'TOP), for example, are translationally
repressed when growth conditions are poor and encode
ribosomal proteins, poly(A) binding protein and translation
elongation factors (Avni et al 1997, Meyuhas 2000). These
C-U rich elements at the extreme 5’ end of mRNAs appear to
contribute very little to thermal stability/secondary structure,
suggesting that other factors make TOP mRNAs repressive to
translation.

The precise mechanism by which the translational
apparatus selectively up-regulates TOP mRNAs in response to
growth signals remains to be determined. Itis known, however,
that the serine/threonine kinase, named mammalian target
of rapamycin (mTOR), promotes TOP mRNA translation
(Holland et al 2004, Patursky-Polischuk et al 2009). The
ability of mTOR to integrate signals sensing growth factor,
amino acid and ATP availability to regulate catabolic
versus anabolic processes has been well studied using the
mTOR inhibitor, rapamycin (reviewed in Furic et al (2009),
Sabatini (2006) and Wullschleger et al (2006)). Briefly,
when conditions are favorable for growth and proliferation
(i.e. sufficient nutrient supply) mTOR modifies its in vivo
substrates p70 S6 kinase and 4E-BP1, by reversible
phosphorylation of specific amino acid residues. p70 S6
kinase activated by mTOR is then able to phosphorylate
the small ribosomal subunit protein S6 (rpS6). Similarly,
mTOR-dependent phosphorylation of 4E-BP1 at multiple sites
(Thr37, Thr46, Ser65 and Thr70) leads to the release of
the functional mRNA 5'cap-binding protein eIFAE (Beretta
et al 1996, Gingras et al 2001). As discussed above,
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Figure 2. Typical profile drawn during the ultracentrifuge-based
sedimentation of ribonucleoprotein complexes. Actively translating
mRNAs associated with multiple ribosomes (polysomes) sediment
more deeply (right) in a sucrose gradient and can be collected in
later fractions.

recognition of the 5’ cap of mRNAs by eIF4E and recruitment
of the other elFAF components, elF4G and elF4A, are
crucial steps in the initiation of cap-dependent translation.
For efficient, stable mRNA cap binding and initiation of
mRNA translation, eI[F4E must bind elF4G, an interaction
that is subject to competitive inhibition by the eIF4E-
binding proteins (4E-BPs) (Pause et al 1994, Yanagiya
et al 2009). In mammals three 4E-BPs exist (4E-BPI,
4E-BP2 and 4E-BP3), each containing the canonical elF4G
binding sequence for elFAE: Tyr-X-X-X-X-Leu-¢, where ¢
represents a hydrophobic amino acid (reviewed in Topisirovic
and Borden (2005)), allowing hypophosphorylated 4E-BPs to
function as competitive inhibitors of elF4F formation. This
molecular mechanism then links growth signaling through
mTOR to increase cap-dependent translation of mRNAs that
are dependent on elF4F.

Originally, it was thought that mTOR-dependent
phosphorylation of p70 S6 kinase and rpS6 regulated TOP
mRNA translation; however, more recent studies, including
those using a genetically modified ‘knock-in’ mouse with
rpS6 phosphorylation sites mutated, have ruled out a role
of p70 S6 kinase-mediated phosphorylation of rpS6 in
regulating TOP mRNA translation (Ruvinsky et al 2005,
Stolovich et al 2002, Tang et al 2001). While all nuclear
transcribed mRNAs are capped, certain mRNAs are more
dependent on elF4E than others for translation. Recent
near genome-wide studies have attempted to elucidate which
mRNA targets are translated in an eI[F4E-dependent manner
(Larsson et al 2006, Mamane et al 2007). These studies
combine microarray technology with ultracentrifuge-based
fractionation and collection of polysome-associated mRNA to
estimate mRNA translation efficiency. In addition to finding
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Figure 3. Secondary structure/thermal stability predictions (mfold)
of the 5UTRs of commonly studied targets of eI[F4F-mediated
translation, cyclin D1 (B), VEGF (C) and ODC (D), suggest a high
degree of G—C base pairing relative to the relatively unstable 5SUTR
of GAPDH (A).

specific mRNAs translationally up-regulated upon eIF4E over-
expression, such studies have the potential to identify novel
sequence elements conferring eIF4E translational dependence.
Interestingly, a number of ribosomal proteins are translated
in an elF4E-dependent manner using this approach, raising
the question of whether mTOR signaling to 4E-BPs is at
least partially responsible for the regulation of TOP mRNA
translation in response to growth signals.

Deregulated mRNA translation in cancer

Cancer is often explained by the uncoupling of cell growth
and proliferation from the intra- and extra-cellular cues that
should keep it check. Upstream signaling proteins (PTEN,
LKBI and TSC2) that normally suppress mTOR signaling
under nutrient poor conditions (figure 1) are often lost in
cancer yielding unrestrained mTOR-dependent growth and
mRNA translation (reviewed in Faivre et al (2006)). As
such, it has been suggested that cancers driven by hyperactive
mTOR signaling should be hypersensitive to treatment with
mTOR inhibitors, and to this end two rapamycin analogs
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have acquired FDA approval as anti-cancer agents (Abraham
and Eng 2008, Choo and Blenis 2006). While perhaps
all eukaryotic cells and tissues require mTOR activity for
growth and proliferation, recent work has shown that non-
proliferating cells can tolerate mTOR loss, suggesting that
novel mMTORC1/mTORC?2 (see below) inhibitors might be
used to safely treat humans (Nardella et al 2009).

Whether the efficacy of mTOR inhibitors in blocking
cancer growth is mediated by 4E-BPs or other downstream
targets remains unclear; however, much data supports
the therapeutic potential of blocking eIF4E activity.
elF4E over-expression has long been known to promote
tumorigenic transformation (Lazaris-Karatzas et al 1990), and
expression of 4E-BP1 mutants lacking the inhibitory mTOR
phosphorylation sites blocks tumorigenesis (Avdulov et al
2004). RNA interference-based knockdown of eIF4E shows
promise in the clinical treatment of tumors (Graff e al 2008).
Similarly, cell permeable peptides or small molecules that
mimic the inhibitory binding of 4E-BP1 to eIF4E induce rapid
apoptosis (Herbert et al 2000, Moerke et al 2007). Finally,
recent work has demonstrated the importance of mTOR-
dependent 4E-BP1 phosphorylation in tumorigenesis using
a lymphoma model (Hsieh et al 2010). Taken together,
these studies demonstrate that targeting elF4E-dependent
translation and subsequent growth of tumors with hyperactive
mTOR signaling is a feasible therapeutic strategy. Similarly,
each molecular mechanism regulating mRNA translation may
provide a novel therapeutic approach. The flow of information
from the outside of the cell to each specific mRNA is subject
to multiple points of regulation, allowing the potential for
therapies targeting a single mRNA, functionally related groups
of mRNAs, or large groups of mRNAs.

mTOR signaling: new roles elucidated with new
inhibitors

The mTOR inhibitor rapamycin has proved to be a very
specific and potent molecular tool in the elucidation of
mTOR-dependent molecular events. mTOR exists in at least
two distinct protein complexes (MTORC1 and mTORC?2),
and rapamycin primarily inhibits the mTORCI1 complex
(Sarbassov et al 2004). In order to function, rapamycin
must bind both FK506-binding protein/peptidyl-prolyl cis—
trans isomerase FKBP12 and the FKBP-rapamycin binding
(FRB) domain of mTOR to function as an mTOR inhibitor
(Brown et al 1994); however, just how rapamycin specifically
inhibits mTORC1 and not mTORC?2 is currently unknown.
Proposed theories include (a) the mTORC2 component Rictor
forming a physical barrier precluding FKBP12 rapamycin
access to mTOR (Jacinto et al 2004, Sarbassov et al 2004)
and (b) rapamycin preventing mTORC1 complex formation or
promoting dissociation of existing complexes (Hara et al 2002,
Kim et al 2002, Oshiro et al 2004). Future work elucidating the
mechanism will likely reveal novel drug-targetable molecular
events regulating mMTORCI1 versus mTORC2 activity.

One strategy proposed to inhibit both mTORCI1 and
mTORC?2 activities is the use of small molecule inhibitors
that compete with ATP for its binding pocket within the

kinase domain of mTOR (Edinger et al 2003, Sabatini
2006). Multiple nonspecific phosphatidylinositol-3 kinase
(PI3K) and PI3K-like kinase (PIKK) inhibitors including
LY294002, wortmannin, PI-103, compound 401 and NVP-
BEZ235 can efficiently block mTOR kinase domain activity
due to the structural similarity between these structurally
related enzymes (Ballou et al 2007, Fan et al 2006, Maira et al
2008). While some of these compounds were successful in
demonstrating the efficacy of inhibiting mTOR in combination
with specific PI3K isoforms, it remains to be determined
whether their lack of specificity will prevent success in
clinical trials. Recently, however, specific mTOR kinase
domain inhibitors capable of blocking mMTORC1 and mTORC2
activities have been described and have allowed the elucidation
of rapamycin-insensitive mTORCI1 activity toward 4E-BP1
phosphorylation sites Thr37 and Thr46 (Feldman et al 2009,
Thoreen ez al 2009). While rapamycin is efficient at blocking
mTORC]1-dependent phosphorylation of Ser65 and Thr70,
these new inhibitors fully block 4E-BP1 phosphorylation at all
four sites and should be useful in the elucidation of new 4E-
BP-dependent phenomena, as full 4E-BP1 dephosphorylation,
including at Thr37 and Thr46, correlates best with elFAE
binding (Livingstone et al 2009).

As shown in figure 1, mMTORCI1 phosphorylates 4E-BPs
and the hydrophobic motif site (Thr389) on p70 S6 Kinase,
whereas mTORC?2 is the in vivo kinase for the hydrophobic
motif site of other key AGC kinase family members: Akt,
SGK and PKC (Garcia-Martinez and Alessi 2008, Hresko
and Mueckler 2005, Ikenoue et al 2008, Sarbassov et al
2005). Given the importance of these rapamycin-insensitive
mTOR substrates, it has been proposed that non-rapamycin
analog mTOR inhibitors will more potently target mTOR-
dependent tumors (Edinger er al 2003, Sabatini 2006). The
therapeutic use of mTOR kinase inhibitors is likely to have
multiple effects apart from reducing eIF4E-dependent mRNA
translation. Blockage of mTORC2-dependent Akt activation,
for example, should negatively impact a multitude of survival
signals repressing apoptosis of cancer cells.

Summary and outlook

While mRNA transcription is, in part, responsible for
a protein’s cellular abundance, mRNAs are subject to
multiple steps regulating their translation to a specific
protein. Translational control allows spatial and temporal
regulation of protein production, along with operon-like
coordinate expression of groups of functionally related
proteins depending on the 5’ and 3’ UTRs of the encoding
mRNAs (Keene and Tenenbaum 2002). The bioinformatic,
technical and genetic tools reviewed herein represent the
current state-of-the-art in our ability to study mRNA
translational regulation and are the basis for the development of
disease therapies aimed at controlling it. The success of anti-
cancer agents known to directly suppress elF4E-dependent
mRNA translation suggests that one can identify, characterize
and control mRNA translation for therapeutic benefit. Future
advances in the identification and grouping of mRNA elements
will be a key in elucidating novel regulatory processes
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controlling their translation. Clearly, nucleotide sequences and
crude structural predictions will give only limited information
regarding the homology of two mRNA regions, so more
complex, three-dimensional, structural predictions will have
to be utilized to achieve this goal of elucidating previously
unidentified motifs.

Each newly identified mRNA regulatory event may be
subject to its own set of regulatory mechanisms governed by,
among other factors, RNA binding proteins and signaling
pathways. While TOP mRNAs, for example, have been
subject of significant study, the molecular mechanisms
governing their translation remain unclear. Most evidence
suggests a role for mTOR-dependent phosphorylation of
targets, including 4E-BPs, in this process, but even the study
of this well-defined group of mRNAs has demonstrated a need
for improved methods in the study of translational control.

Once it is determined, however, how a regulatory event
modulates translation of a group of mRNAs responsible
for a particular phenomenon (e.g. growth, apoptosis,
proliferation), one can use this knowledge to develop new
therapies that target entire groups of functionally related
proteins. The development of mTOR inhibitors as anti-cancer
agents strongly supports this notion, since mTOR-dependent
translation of eIF4F translational targets is necessary for
the deregulated growth of cells seen in cancer. Targeting
downstream processes should lead to more specific therapies,
however. If the goal is to diverge from traditional
chemotherapies, one would like to target a process that is
specific to the diseased state. Understanding the signaling
flow allows one to understand how one might devise a general
therapy (by targeting all of mTOR or Akt signaling) or a very
specific therapy (by targeting one downstream RNA or RNA
binding protein).
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