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SUMMARY

The eukaryotic translation initiation factor 4AI
(eIF4AI) is the prototypical DEAD-box RNA helicase.
It has a ‘‘dumbbell’’ structure consisting of two do-
mains connected by a flexible linker. Previous
studies demonstrated that eIF4AI, in conjunction
with eIF4H, bind to loop structures and repetitively
unwind RNA hairpins. Here, we probe the conforma-
tional dynamics of eIF4AI in real time using single-
molecule FRET. We demonstrate that eIF4AI/eIF4H
complex can repetitively unwind RNA hairpins by
transitioning between an eIF4AI ‘‘open’’ and a
‘‘closed’’ conformation using the energy derived
from ATP hydrolysis. Our experiments directly track
the conformational changes in the catalytic cycle of
eIF4AI and eIF4H, and this correlates precisely with
the kinetics of RNA unwinding. Furthermore, we
show that the small-molecule eIF4A inhibitor hippur-
istanol locks eIF4AI in the closed conformation, thus
efficiently inhibiting RNA unwinding. These results
indicate that the large conformational changes un-
dertaken by eIF4A during the helicase catalytic cycle
are rate limiting.

INTRODUCTION

The biological function ofmost enzymes is closely related to their

dynamic structural properties and to their ability to switch be-

tween different conformations upon substrate binding andmodi-

fication. Characterization of their dynamic properties can thus

provide vital information to understanding how these enzymes

function and what may lead to malfunctioning events. Moreover,

this information can inspire the design of novel molecular inhib-

itors or stimulators intended to regulate their activity with poten-

tially therapeutics properties. A case in point is the eukaryotic

initiation factor 4AI (eIF4AI), an RNA helicase and a core member

of the eIF4F complex, which mediates 50 m7GpppN cap binding
Stru
and mRNA unwinding (Sonenberg and Hinnebusch, 2009). This

enzyme catalyzes ATP-driven unwinding of secondary structure

at the 50 UTR of the mRNA required for translation initiation and

ribosome recruitment on most capped mRNA transcripts (So-

nenberg and Hinnebusch, 2009). An alternative form of transla-

tion initiation occurs independent of the 50 end by recruitment

of 40S ribosomal subunits to internal ribosome entry sites

(IRESs)—a process that in many cases also involves RNA un-

winding by eIF4AI (Pestova et al., 2001).

eIF4AI is the prototypical member of the DEA(D/H)-box RNA

helicase family and is one of the more abundant translation

initiation factors, present at �3 copies/ribosome (Duncan and

Hershey, 1983; Galicia-Vázquez et al., 2012). DEAD-box pro-

teins share highly conserved amino acid sequence motifs

and a helicase core of two flexibly linked domains. In addition

to interacting with double-stranded RNA and single-stranded

RNA (ssRNA) at the canonical RNA binding site within the

core, eIF4AI also interacts with other initiation factors, such

as the scaffolding protein eIF4G (Andreou and Klostermeier,

2014; Feoktistova et al., 2013; Oberer et al., 2005) and the

RNA-binding factors, eIF4H and eIF4B (Rogers et al., 2001b).

Crystallographic analyses have revealed that related DEAD-

box proteins, such as Vasa (Sengoku et al., 2006), eIF4AIII

(Bono et al., 2006), Mss116p (Del Campo and Lambowitz,

2009), DbpA (Henn et al., 2010), CYT-19 (Grohman et al.,

2007), and YxiN (Theissen et al., 2008), adopt a compact

conformation in the presence of RNA and the ATP analog

AMPPNP. ATP binding and phosphate release are thought to

control opening and closing of the helicase core (Andreou

and Klostermeier, 2012). This movement coordinates RNA

binding and ATPase activity and is thus central to the function

of DEAD-box helicases. However, the relationship between the

helicases conformational transition timescales and their un-

winding activity remains vague, because this question necessi-

tates direct observation of the helicases’ conformation over

time. In particular, X-ray crystallography indicated that ssRNAs

may become ‘‘kinked’’ when eIF4AI adopts a close conforma-

tion, suggesting that this might be related to the enzymes’ un-

winding capabilities (Bono et al., 2006; Del Campo and Lambo-

witz, 2009; Sengoku et al., 2006). However, ssRNA kinks can

only explain local RNA melting (�3 nt), whereas DEAD box
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Figure 1. Binding of RNA and AMPPNP

Induces a Conformational Change in eIF4AI

(A) A schematic diagram of eIF4AI* mutants con-

sisting of two cysteine-to-alanine substitutions

(C131A, C134A) and two native cysteines (C66,

C264) used for coupling a donor-acceptor FRET

dye pair (Cy3-Cy5).

(B) FRET histograms for the labeled eIF4AI* con-

structs. Top panel shows the FRET histogram for

eIF4AI* (N- and C-terminal domains are labeled) in

the absence of any ligands. Bottom panel shows

FRET histogram of eIF4AI* upon addition of RNA

HP and AMPPNP.

(C) EMSA of full-length eIF4AI and NTD- and CTD-

truncated mutants binding RNA in the presence or

absence of eIF4H.
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helicases, such as eIF4AI, can unwind longer RNA duplexes

(Rogers et al., 2001a).

We have recently shown that the eIF4AI/eIF4H complex can

bind directly to RNA loop structures and repetitively unwind

short RNA hairpins (Sun et al., 2012). These results indicated

that assembly of eIF4AI/eIF4H on the RNA hairpin substrate,

and subsequent unwinding of its duplex regions, can be signifi-

cantly enhanced by stable binding of the proteins to single-

stranded loop domains longer than a critical minimum length of

6 nt. Here, we focus our attention on eIF4AI’s conformational

transitions during RNA unwinding. By labeling the helicase with

a donor-acceptor fluorophore pair, we directly probe its confor-

mational transitions during ATP binding and hydrolysis using

single-molecule fluorescence resonance energy transfer (sm-

FRET) methods. We find that in the presence of eIF4H, eIF4AI

repetitively unwinds the RNA hairpin substrate by transitioning

between an ‘‘open’’ and a ‘‘closed’’ conformation using the en-

ergy derived from ATP hydrolysis. The transitions between these

two conformations involve interdomain distance changes of

nearly 2 nm and on average take 1.7 s for a complete cycle

(closed-open-closed). We further show that the natural product

hippuristanol (Bordeleau et al., 2006) inhibits the helicase activity

of eIF4AI by locking it into the closed conformation.

RESULTS

eIF4AI/eIF4H/RNA Hairpin Complex Formation Involves
a Transition from an ‘‘Open’’ to a ‘‘Closed’’ Conformation
Site-directed mutagenesis was used to generate a cysteine-less

eIF4AI mutant (C66A, C131A, C134A, C264A). In addition, eIF4A

variants that harbored only two cysteine residues in either the

NTD at position 66 and 131 (C134A, C264A), two cysteines in

the CTD at position 264 and 403 (C66A, C131A, C134A,
2 Structure 22, 1–8, July 8, 2014 ª2014 Elsevier Ltd All rights reserved
A403C), or a single cysteine in each of

the two domains at position 66 and 264

(C131A, C134A), shown schematically in

Figure 1A (detailed schematic diagrams

of all mutants are shown in Figure S7

[available online]). We refer to these three

full-length eIF4AI mutants as eIF4AI*N,

eIF4AI*C, and eIF4AI*, respectively.

These mutants showed comparable heli-
case activity in vitro with the wild-type eIF4AI (Figures S6 and

S7). The cysteine residues were labeled with donor and acceptor

dyes (Cy3 and Cy5 maleimide derivatives, respectively)

with >95% labeling efficiency for single-molecule analyses.

Sm-FRET burst analyses of the purified-labeled proteins were

used to determine the FRET level distributions, which showed

two clear peaks both for eIF4AI* and for eIF4AI*N and eIF4AI*C.

In all cases we observe a peak around F = 0, which simply rep-

resents proteins labeled with either a single or two donor mole-

cules instead of a donor-acceptor pair, and a second ‘‘nonzero’’

peak. This second peak varied widely among the three eIF4AI

mutants: the eIF4AI* mutant exhibited a peak at low FRET levels

F = 0.30 ± 0.04 (Figure 1B, top panel). The two other mutants dis-

played peaks at F = 0.80 ± 0.02 or F = 0.90 ± 0.02 (eIF4AI*N or

eIF4AI*C, respectively, as shown in Figure S1). The nonzero

FRET peak can be used to estimate the donor-acceptor dis-

tance. Specifically, the high FRET values obtained for the con-

trols eIF4AI*N and eIF4AI*C agree very well with the expected dis-

tance between the two dyes (4.8 and 4.2 nm, respectively) using

their known Förster radius of R0 = 6 nm (Roy et al., 2008).

The relatively low FRET state of the doubly labeled mutant

eIF4AI* is consistent with the ‘‘open’’ state conformation of yeast

and human eIF4A homologs (Caruthers et al., 2000; Chang et al.,

2009). Incubation of eIF4AI*, eIF4H, and the RNA hairpin (HP)

with 2 mM nonhydrolysable ATP analog, AMPPNP, induced

the formation of an additional FRET state having a much higher

value (Figure 1B, bottom; F = 0.80 ± 0.04). This result indicates

that binding of AMPPNP induces closure of eIF4AI to a more

compact conformation in which the NTD and CTD of the protein

are brought closer to each other. We define this state as

the ‘‘closed’’ eIF4AI conformation. As can be seen from Fig-

ure 1B, despite the fact that AMPPNP is added at saturating con-

centration levels, only �50% of the bursts consisting of a
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Figure 2. Direct and Real-Time Observation

of the Open and Closed Conformations of

eIF4AI*

(A and B) The labeled eIF4AI and the accompa-

nying reagents (RNA HP, eIF4H, and AMPPNP)

were encapsulated in 200 nm vesicles and FRET

measurements performed. (A) A typical single-

molecule FRET trace exhibiting ‘‘closed’’ confor-

mation (left panel), yielding high FRET state

(histogram on right panel). (B) A typical single-

molecule trace exhibiting ‘‘open’’ conformation

(left panel), yielding low FRET state (right panel

histogram). The FRET histograms (right panels)

include >100 single-molecule traces in each case.
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donor-acceptor pair showed high FRET value. We note that the

burst analysis cannot distinguish between free eIF4AI or eIF4AI

present in an eIF4AI/eIF4H/RNA hairpin complex. We postulate

that the contribution to the lower FRET peak comes from uncom-

plexed (free) eIF4AI molecules remaining at thermal equilibrium

with the complexed form.

We further used an electrophoretic mobility shift assay (EMSA)

to resolve the complex formed in the presence of eIF4H and an

RNA HP molecule. To this end, we generated N-terminal

(eIF4A-NTD, residues 1–244) and C-terminal (eIF4A-CTD, resi-

dues 237–406) domain truncation mutants. Incubation of wild-

type eIF4AI or the truncation mutants with the RNA HP substrate

showed weak complexes or none at all (Figure 1C, lanes 1–3). In

contrast, in the presence of eIF4H, both full-length eIF4AI and

eIF4A-NTD formed a complex with RNA HP, indicated by the

high FRET state in Figure 1B (see arrow), whereas this was not

observed with eIF4A-CTD (Figure 1C, compare lane 7 to lanes

4–6). These results suggest that eIF4H binds to the N-terminal

domain of eIF4AI when RNA HP is present.

Because the burst analysis provides only diffusion limited

‘‘snapshots’’ of the conformational state of eIF4AI, it does not

inform on the conformational transitions timescales. Specifically,

we wanted to characterize the stability of the eIF4AI/eIF4H/RNA

HP complex upon AMPPNP binding. To this end, we encapsu-

lated labeled eIF4AI and the accompanying substrates and co-

factors (RNA HP, eIF4H, and AMPPNP) into lipid vesicles

(DMPC) at the same stoichiometric ratios used for single-mole-
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cule analysis of individual complexes

(see the Experimental Procedures). On

average, the relatively small vesicle size

in conjunction with the low reagent con-

centration used during vesicle extraction

ensures the inclusion of a single eIF4AI

molecule per vesicle. A small fraction of

the lipid molecules contained a biotin

moiety to facilitate surface immobilization

for total internal reflection fluorescence

(TIRF) imaging—obviating the need to

induce further modifications to the RNA

substrate or protein. Acquiring the donor

and acceptor intensity traces versus

time for a set of >500 individual com-

plexes indicated that the complexes exist
in only one of two states: the ‘‘open’’ (low FRET) or the ‘‘closed’’

(high FRET) state, rather than dynamically fluctuating between

the two (Figure 2). By way of example, we present a trace illus-

trating a situation in which eIF4AI* exhibits a high FRET level

(‘‘closed’’ conformation) for a period of >25 s, after which time

the acceptor dye photobleaches (Figure 2A), and a trace

showing eIF4AI* exhibits low FRET (‘‘open’’ conformation) for a

period of >17 s (Figure 2B). Importantly, in none of our single

molecule traces did we observe transitions between the two

states in the presence of AMPPNP.

eIF4AI Undergoes Open-to-Closed Conformational
Transitions during RNA Unzipping
Substituting AMPPNP with ATP in the FRET assays resulted in

rapid and reversible FRET transitions between two distinct

levels of similar FRET values to the closed and open conforma-

tions registered in the presence or absence of AMPPNP. First,

burst analysis was used to characterize thousands of com-

plexes in the presence of ATP. These results indicate that the

closed conformation F = 0.72 ± 0.02 is approximately 2-fold

more populated compared to the open conformation F =

0.27 ± 0.04 (Figure 3A). The burst analysis measurements do

not inform on the actual transition timescale between the two

states and may in fact result from either static or dynamic equi-

librium between the two states. To resolve this question, we

encapsulated eIF4AI with eIF4H, ATP, and RNA HP in lipid

vesicles and performed sm-FRET measurements. A typical
14 ª2014 Elsevier Ltd All rights reserved 3
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Figure 3. eIF4AI* Undergoes Open-to-

Closed Conformational Transitions during

RNA Unzipping

(A and B) FRET transitions between open and

closed conformations are observed in the pres-

ence of ATP. (A) FRET histogram obtained using

burst analysis (n > 5,000) show two nonzero FRET

peaks at F = 0.72 ± 0.02 (closed conformation),

and F = 0.27 ± 0.04 (open conformation). (B)

Typical sm-FRET trace when eIF4AI* is encapsu-

lated with eIF4H, RNA HP, and ATP in a vesicle

(top panel). Multiple conformational transitions

between open-closed states are observed (bot-

tom panel).

(C) Statistical analysis of transitions yield dwell

times for both stateswith characteristic timescales

topen = 0.68 ± 0.05 s and tclosed = 1.20 ± 0.05 s.
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sm-FRET trace and the calculated FRET level as a function of

time are shown in Figure 3B. We observe multiple slow confor-

mational transitions between the two FRET levels over a span

extending beyond 2 min. Each oscillation of the FRET trace be-

tween high and low levels represents a single ‘‘open’’ and

‘‘closed’’ cycle of eIF4AI. A hidden Markov model (HMM) anal-

ysis (see the Experimental Procedures) (McKinney et al., 2006)

was used to extract the dwell times of the two states character-

ized by the ‘‘closed time’’ (dwell time at high FRET level) and

the ‘‘open time’’ (dwell time at low FRET level). Statistical anal-

ysis of hundreds of these transitions revealed exponential dis-

tributions of the dwell times for each state (Figure 3C), with

characteristic timescales, topen = 0.68 ± 0.05 s and tclosed =

1.20 ± 0.05 s. The 2-fold increase in dwell time of eIF4AI in

the closed state correlates well with the burst analysis ampli-

tudes in Figure 3A. Notably, in the absence of eIF4H, and other-

wise under identical conditions, we have not observed confor-

mational transitions of eIF4AI during the 2 min span of our
4 Structure 22, 1–8, July 8, 2014 ª2014 Elsevier Ltd All rights reserved
single molecule observations, indicating

that the helicase exhibits weak activity

without its cofactors.

The dynamic transitions between

eIF4AI conformations, characterized in

Figures 3B and 3C, conform to a simple,

first-order, two-state kinetic cycle,

involving ATP binding (open to closed)

and ATP hydrolysis and phosphate

release (closed to open). Notably, the

two timescales tclosed and topen
measured for the conformational

dynamics of eIF4AI are practically indis-

tinguishable from the ‘‘waiting’’ and ‘‘un-

winding’’ timescales, respectively, that

were previously reported using the

eIF4AI/eIF4H complex and labeled RNA

HP (Sun et al., 2012). This striking obser-

vation was confirmed by repeating our

measurements using a FRET-labeled

RNA HP and unlabeled mutant eIF4AI*

(Figure S2). This experimental setup al-

lows us to correlate the open eIF4AI
conformation with an unwound RNA hairpin state and the

closed eIF4AI conformation with a closed hairpin state. A transi-

tion from a FRET value 0.4 to 0.8 corresponds to a distance

change of �2 nm by eIF4AI, which can induce destabilization

(or ‘‘unzipping’’) of an RNA duplex of �15 bp long (DG =

�18 kcal/mol). In control experiments using eIF4AI*, we did not

observe conformational transitions when either ATP or RNA HP

was absent.

To rule out the possibility that the observed conformational

changes were due to intradomain interactions, we performed

single-molecule experiments with double-labeled eIF4AI*N and

eIF4AI*C, which had both donor and acceptor in the same

domain (Figure S3). The results revealed only small FRET

changes in both NTD and CTD, with FRET levels remaining

mostly high throughout the experiment. Taken together, our

data suggest that hairpin unzipping and eIF4AI’s large conforma-

tional transitions are tightly coupled and involve movements of

the NTD with respect to the CTD.



Figure 4. Hippuristanol Inhibits eIF4AI

Unwinding by Trapping It in the Closed

Conformation

Top panel: a typical sm-FRET trace for unwinding

of double-labeled RNA hairpin with eIF4AI/eIF4H

complex in the absence of hippuristanol (left).

Multiple FRET states show repetitive unwinding.

The addition of 10 mM hippuristanol completely

inhibits these oscillations, trapping the RNA HP in

its closed state (right). Bottom panel: a typical

FRET trace RNA HP unzipping and labeled eIF4AI*

in the absence (left) and presence of hippuristanol

(right).
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Hippuristanol Inhibits eIF4AI Unwinding by Locking It in
the Closed Conformation
The natural product hippuristanol targets eukaryotic translation

initiation factor eIF4AI. It was identified as a translation inhibitor

using a high-throughput screen designed to separate com-

pounds that specifically target cap-dependent translation (Bor-

deleau et al., 2006). Hippuristanol inhibits the RNA binding activ-

ity of eIF4AI in vitro and in vivo (Bordeleau et al., 2006; Lindqvist

et al., 2008) without interfering with ATP binding to eIF4AI. It is

therefore an ideal test molecule to validate our activity model,

where the conformational dynamics of eIF4AI are coupled to

RNA duplex unwinding. Bulk titration assays performed with

increasing amounts of hippuristanol revealed that when the hip-

puristanol concentration was 5-fold higher than eIF4AI, com-

plete inhibition of helicase activity was obtained (Figure S4A).

Notably, in our assays, hippuristanol does not inhibit the binding

activity of eIF4AI/eIF4H complex to RNA hairpin (Figure S4B),

presumably because of the strong binding of eIF4H to the RNA

loops (Sun et al., 2012), mediating binding of eIF4AI to its RNA

substrate.

FRET results obtained with AMPPNP (Figure 2) suggested

that binding of this ATP analog induces eIF4AI to undergo a

conformational change from an open to a closed state. In addi-

tion, the results in Figure 3 suggest that ATP hydrolysis triggers

the transition from the closed to the open state, as well as RNA

unzipping. Based on this, and the known inhibitory characteris-

tics of hippuristanol, we postulated that hippuristanol should

not interfere with the first transition but would prevent ATP

hydrolysis and thereby stall the unzipping process. To test

this hypothesis, we first performed an sm-FRET study with dou-
Structure 22, 1–8, July 8, 20
ble-labeled RNA HP as previously re-

ported (Sun et al., 2012). Typical sm-

FRET traces are shown in Figure 4. In

the absence of hippuristanol, FRET oscil-

lations are clearly visible, corresponding

to the opening and closing of the RNA

HP. However, upon addition of hippuris-

tanol, these oscillations were inhibited,

locking the RNA HP at the high FRET,

closed state (top right panel). Sm-FRET

vesicle analysis of doubly labeled eIF4AI*

in the absence and presence of hippuris-

tanol are shown in the bottom panel of

Figure 4. Although these data were
somewhat ‘‘noisier’’ than the data obtained with labeled RNA

HP FRET, we clearly observed that in the presence of hippuris-

tanol, eIF4AI is locked at the high FRET closed conformation.

Further analysis revealed that less than 1% of the traces

collected (n > 500) represented conformational changes in the

presence of hippuristanol, whereas >11% showed oscillations

without it.

DISCUSSION

In this study we combined two sm-FRET analyses methods to

characterize the conformational dynamics of eIF4AI during

RNA unwinding. Sm-FRET burst analysis provided ‘‘snapshots’’

of the characteristic FRET states of thousands of individual mol-

ecules within a relatively short period of time, thus permitting effi-

cient and accurate determination of the representative FRET

values under various conditions. In contrast, vesicle encapsula-

tion of individual eIF4AI/eIF4H/RNA complexes allowed direct

measurement of the dynamics (timescales) of any conforma-

tional changes of eIF4AI over time. But the last method is

extremely time consuming. In the presence of ATP, we observe

rapid transitions of eIF4AI between low and high FRET levels.

These transitions were not observed when ATP was substituted

with nonhydrolyzable AMPPNP molecules. These measure-

ments, combined with single-molecule studies of FRET-labeled

RNA molecules, allowed us to relate enzyme conformational

timescales with RNA unwinding dynamics. Consolidating our re-

sults into a simplified coherent picture (Figure 5), we propose

that ATP binding to eIF4AI induces a transition from its open

conformation to the closed conformation. In the closed
14 ª2014 Elsevier Ltd All rights reserved 5



Figure 5. A Schematic Illustration of the Proposed Steps during Hairpin Binding and Stem Unzipping by the eIF4AI/eIF4H Complex

In solution, eIF4AI adopts an open conformation. eIF4AI binding to the hairpin is mediated by eIF4H loop binding. Upon ATP binding, eIF4AI adopts the closed

conformation, and upon ATP hydrolysis, eIF4AI returns to the open conformation, which also induces RNA duplex unzipping. The RNA strand bound transiently to

the CTD of eIF4AI is then released and the duplex quickly reanneals.
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conformation state, both the NTD and CTD are free to bind to an

RNA strand. ATP hydrolysis stimulates the transition to the open

state of the enzyme, while simultaneously unzipping the RNA

strand. Thereafter, the RNA strand is released and eIF4AI is

ready to bind a new ATP molecule. In the presence of eIF4H,

this process is capable of repeating itself many times, an event

that results in persistent unzipping of short RNA hairpins (up to

�12 bp). The sm-FRET dwell-time distributions of eIF4AI confor-

mational dynamics indicate that 5% of the unwinding/waiting

events show total dwell time of less than 0.2 s with a median

value of unwinding and waiting �1 s. These results are consis-

tent with recent theoretical model (Shah et al., 2013) suggesting

that the average time between initiation events on a given mRNA

molecule ranges from 4 (5%) to 233 s (95%), with a median value

of 40 s.

eIF4H contains an RNA recognition motif (RRM) with

sequence homology to another accessory protein, eIF4B

(Richter-Cook et al., 1998). NMR studies showed that in the

absence of RNA the C-terminal domain of eIF4AI interacts

with both the middle domain of eIF4G (Oberer et al., 2005)

and eIF4H (Marintchev et al., 2009). Moreover, single-molecule

FRET assays were used to measure the kinetics of assembly

of eIF4E-eIF4G1-eIF4A-mRNA (O’Leary et al., 2013). Our

EMSA results indicate that in the presence of the RNA HP,
6 Structure 22, 1–8, July 8, 2014 ª2014 Elsevier Ltd All rights reserve
eIF4H binds stronger to the N-terminal domain of the trun-

cated eIF4AI, indicating that substrate binding may play a

role on the eIF4AI-eIF4H-RNA complex structure. eIF4B, in

conjunction with the scaffolding protein eIF4G, was previously

shown to stimulate RNA unwinding by eIF4A (Rogers et al.,

2001b). We demonstrate that eIF4H binds to the RNA loop

and interacts with the NTD of eIF4AI in order to facilitate

repeated open-to-closed conformational transitions (fueled by

ATP hydrolysis). RNA unwinding of short hairpins is achieved

with these repeated transitions. It would be interesting to

determine if eIF4B would behave the same way or if they in-

crease the helicase activity of eIF4AI by district mechanisms.

Our model rationalizes why eIF4AI, and in general all DEAD-

box helicases, do not act as highly processive helicases but

rather induce local RNA unzipping (Jankowsky and Putnam,

2010; Yang et al., 2007). Even though the closed conformation

is observed with the nonhydrolyzable ATP analog AMPPNP,

ATP hydrolysis is required to catalyze RNA unwinding and in

the presence of excess ATP, the repetitive conformational

changes facilitate continuous unwinding. The correlation be-

tween the timescales of the switching from open to the closed

states and repetitive unwinding kinetics indicate that large

conformational changes are the rate-limiting step in the overall

helicase catalytic cycle.
d
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EXPERIMENTAL PROCEDURES

RNA Substrates

DNA and RNA oligonucleotides were purchased from IDTDNA and Dharma-

con, respectively. They are chemically synthesized, modified, and high-perfor-

mance liquid chromatography purified. The structure and sequence of RNA/

DNA duplexes used in this study are shown in Figure S5. The RNA/DNA hairpin

substrate included a 12-nt-long loop and a 12 bp stem region.

Electrophoretic Mobility Shift Assays

EMSAswere performed in binding buffer (20mMTris-HCl [pH 7.5], 50mMKCl,

2.5 mM MgCl2, and 1 mM DTT). Reactions containing the indicated proteins

and Cy5-labeled RNA were performed at room temperature for 30 min. The

single-stranded overhang region of the RNA consisted of 23 nt, and the Cy5

fluorophore was located at the 50 end. Samples were loaded onto 7.5% non-

denaturing polyacrylamide gel and following electrophoresis, gels were

scanned for Cy5 emission using a Pharos FX Scanner (BioRad).

Site-Directed Mutagenesis of eIF4AI

Proteins were expressed and purified as previously described (Sun et al.,

2012). Individual cysteine residues within eIF4AI were mutated to alanines

by PCR-mediated mutagenesis. Generation of truncation mutants was per-

formed in accordance with the Quikchange protocol (Agilent). eIF4AI-NTD

(amino acids [aa] 1–244) was constructed by introducing a stop codon after

aa 244. For eIF4A-CTD (aa 237–406), an NdeI-restriction site (CATATG) was

introduced after the coding region for aa 1–234. A second NdeI site was pre-

sent within the 50 UTR of the cDNA clone, and cleavage by NdeI followed by

religation lead to removal of aa 1–234. Correct sequences were confirmed

for all constructs.

Double Labeling and Purification of eIF4AI Mutants

Proteins were labeled by incubating with a mixture of Cy3-maleimide (donor)

and Cy5-maleimide (acceptor) overnight at 4�C. Protein concentrations were

2 mg/ml and dyes were used at concentrations of at least 5 fold molar excess

with respect to the protein. The reducing agent tris(2-carboxyethyl)phosphine

(TCEP) was added to the reaction at 2 mM to reduce any disulfides in the pro-

tein sample. Free dyes were removed from the labeled sample using Q

Sepharose (GE Healthcare). After loading the proteins on the column, the resin

was washed with 100 ml buffer (20 mM Tris-HCl [pH 7.5], 100 mM KCl, 10%

glycerol, and 0.1 mM EDTA) to eliminate residual free dyes. The rest of the pu-

rification procedure was as previously described (Sun et al., 2012).

Vesicle Encapsulation of RNA Hairpin, eIF4AI, and eIF4H

Encapsulation in lipid vesicles was performed as described in Cisse et al.

(2007), Okumus et al. (2004), and Rhoades et al. (2003). Lipid films were pre-

pared by mixing 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(Cap

Biotinyl) with dimyristoyl phosphatidylcholine (DMPC) (Avanti Polar Lipids) dis-

solved in chloroform (1:100 molar ratio) and gently drying in vacuo. The lipids

were hydrated with buffer containing 20 mM Tris–HCl (pH 7.5) and 50 mM

sodium chloride. RNA substrate was incubated with eIF4AI and eIF4H at

room temperature for 5 min in buffer containing 50 mM Tris-HCl (pH 7.5),

50 mM NaCl, and 2 mM MgCl2. This was then mixed with lipids to yield a final

concentration of 12.5 mg/ml lipid and 400 nM RNA hairpin. The mixture was

manually extruded through a track-etched membrane with 200 nm holes

(Whatman, GE Healthcare) more than 20 times to induce encapsulation.

smFRET Measurements of Immobilized Molecules

Total internal reflection fluorescence (TIRF) microscopy was used for single-

molecule imaging of double-labeled eIF4A. We immobilized 100 pM DMPC

lipid vesicles, which contained RNA hairpin, eIF4H, and double-labeled eIF4AI

directly on biotinylated BSA-streptavidin coated quartz coverslip. The experi-

mental details of imaging single molecules and data acquisition have been

described previously (Sun et al., 2012). Traces were extracted and analyzed

using programs written in Matlab. FRET values were calculated as IA/(IA+ID),

where IA and ID are the fluorescence intensities of the acceptor and donor

channels, respectively, following background and leakage correction. The

two-state FRET oscillations were analyzed using hidden Markov modeling

(HAMMY) (McKinney et al., 2006).
Stru
FRET Measurements of Freely Diffusing Molecules

Free diffusion smFRET measurements were carried out using a home-built

laser confocal microscope system. Excitation was achieved by focusing a

532 nm laser line (New Focus) into the sample solution using a 603 1.2 NA

UPlanApowater immersion objective (Olympus). The emission part comprised

a long-pass filter (Chroma HQ560LP) to remove the scattered light. The fluo-

rescence emission was collected using the same objective, separated from

the excitation light using a dichroic mirror (Chroma), and spatially filtered using

a 100 mm pinhole. The emission was then spectrally split onto two APDs (Per-

kinElmer): one for 550–620 nm and the other for 650–710 nm. Photon counts

were recorded using a counting card (PCI 6602; National Instruments) inter-

faced with a custom LabVIEW program. The sampling rate was 10 kHz.

FRET efficiency histograms were generated by using a two-channel data

collection mode to simultaneously record donor and acceptor intensities as

a function of time, with a binning time of 500 ms. The concentration of dou-

ble-labeled protein used was�20 pM, ensuring that all of the detected signals

were from single molecules. The leakage of donor emission into the acceptor

channel (�10%) was determined using mutant eIF4A (only one cysteine at

position 66) labeled with single Cy3 dye, and then it is used to correct the sig-

nals before FRET analysis. Histograms were fitted with Gaussian functions,

carrying out nonlinear least squares analysis for the fitting using Matlab (Math-

works) or Igor Pro (WaveMetrics).
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